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High-temperature tensile deformation behavior of high-purity HIPed silicon nitride material
was investigated in the temperature range between 1600◦C and 1750◦C. Recoverable
anelastic and non-recoverable deformation was observed in high-purity HIPed silicon
nitride. A power-law deformation model analogous to rheological models was used to
distinguish the different deformation components. A stress exponent n = 1.64 and an
activation energy Q1= 708 kJ/mol was determined for the non-recoverable deformation.
For the anelastic deformation a stress exponent p = 4 and an activation energy Q3= 619
kJ/mol was observed. Diffusional creep and grain boundary sliding with the accomodation
process responsible for the anelastic component are discussed as deformation
mechanisms. C© 2001 Kluwer Academic Publishers

1. Introduction
Silicon nitride ceramics are very important high-
temperature structural materials, because of their high
strength, moderate toughness, and good creep and
oxidation resistance. However, the high-temperature
strength, creep resistance and oxidation kinetics depend
on the amount and chemical compositions of the addi-
tives used for liquid phase sintering [1–3]. The glassy
grain boundary phase serves as a path for the diffu-
sion of oxygen and/or gaseous oxidation products. The
oxidation kinetics becomes faster with an increasing
amount of glassy phase in the material [2]. Transmis-
sion electron microscopy investigations showed that
silicon nitride grains are always separated by a thin
amorphous intergranular film due to the use of additives
[4, 5]. The grain boundary phase is liquid at sintering
temperature and enhances densification of the covalent
silicon nitride materials by a solution-reprecipitation
mechanism. However during applications at elevated
temperatures, the viscous grain boundary phase also
enhances creep by providing regions or paths of high
diffusive conductance [6]. It also enables viscous slid-
ing of the grain boundaries and cavity formation, being

the major creep mechanisms in liquid phase sintered
materials [7, 8]. It was assumed that the viscosity of the
intergranular amorphous phase determines the strain
rates during creep deformation. Therefore the viscosity
of the grain boundary phase in silicon nitride was stud-
ied with the technique of internal friction by Mosher
et al. [9] and a spring-dashpot model for anelastic strain
due to grain boundary sliding was suggested. Besides
the small viscoelastic strains in internal friction exper-
iments, it was also shown in tensile creep experiments
that a considerable amount of the accumulated creep
deformation is recoverable strain [10].

To receive a silicon nitride grade with high oxidation
and creep resistance, Tanakaet al. [11] developed a
high-purity silicon nitride grade without sintering aids
which was produced by hot isostatic pressing. It was
used in previous investigations to study the chemical
width of ultrathin amorphous films at grain boundaries
[12] and the grain boundary relaxation [13]. Backhaus-
Ricoultet al. were investigating the compression creep
behavior of a similar grade of silicon nitride mate-
rial and showed that such a high-purity material has
a remarkable high-temperature resistance compared to
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conventional silicon nitride ceramics [14]. In this inves-
tigation it serves as a model material to study the tensile
deformation behavior of silicon nitride in the ultrahigh-
temperature range between 1600◦C and 1750◦C.

2. Experimental procedure
The Si3N4 material investigated in this study contained
only SiO2 and trace levels of metal impurities but no
other additives [11]. The oxygen content of 2 wt %
comes from the surface oxidation layer of the powder
(SN-E10, Ube Inc., Japan) used for the preparation.
The material was hotisostatically pressed (HIPed) for
2 hours at 1950◦C under a gas pressure of 180 MPa.
The material was fully dense (>99.5%). The silicon ni-
tride grains consist of 100%β-phase with a mean grain
size of 1.1µm. Silica glass was found at triple points
and at the grain boundaries. High-resolution electron
microscopy (HREM) studies revealed that the layers
separating the grains have a thickness of 1 nm [13].

The deformation tests were performed in an 11 bar
nitrogen atmosphere in order to prevent thermal de-
composition of the silicon nitride. The deformation
behavior was investigated in the temperature range be-
tween 1600◦C and 1750◦C. Tests were carried out at
constant strain rates (1× 10−5 s−1, 2× 10−6 s−1) un-
til a stress between 40 MPa and 100 MPa was reached.
Subsequently the stress was kept constant to study creep
deformation. The deformation was evaluated from the
displacement of the crosshead. Silicon carbide fixtures
and pull rods were used to apply the load. After the
creep experiments, the specimens were unloaded to ob-
serve creep recovery. A clamping force of 2 N was
the only load applied during these tests. A dog-bone
shaped specimen geometry with a cross section of
0.6 mm× 0.9 mm and a gauge length of 4.4 mm was
used for the testing (Fig. 1). The surfaces of the speci-
mens were mirror-polished with diamond pastes.

After the experiments, the microstructure of the
materials was investigated by scanning electron mi-
croscopy (SEM) and transmission electron microscopy
(TEM). For the SEM investigations a Zeiss DSM
982 SEM with a Schottky field emission cathode
was used. The specimens were ground, polished and
plasma-etched to study the microstructure. With one
specimen, energy filtered transmission electron micro-
scope (EFTEM) investigations were carried out using

Figure 1 Geometry of the specimens. a, b, and c indicate positions where
the microstructure was investigated in the scanning electron microscope.

Figure 2 Power-law deformation model with constitutive equations,
following rheological models.

a Zeiss EM 912 Omega microscope. Standard tech-
niques were used for the preparation of the TEM spec-
imen (grinding, polishing, and ion thinning to electron
transparency).

3. Data evaluation
To receive a phenomenological description of the de-
formation behavior, a power-law deformation model,
closely related to rheological models, consisting of
elastic, anelastic recoverable and non-recoverable de-
formation elements was used for data evaluation. The
model and the corresponding constitutive equations of
the deformation elements are shown in Fig. 2. Power-
law relationships between the dashpot stresses and
strains were used instead of the linear relationships usu-
ally taken for rheological models (Equations 1 and 3).
The mathematical description of the circuit of the defor-
mation elements is given by the Equations 5, 6, and 7.

σ3+ σ4 = σ (5)

ε1+ ε2+ ε3 = ε (6)

ε3 = ε4 (7)

Assuming an Arrhenius relation for the temperature
dependence of the dashpot deformabilities, 1/η, the
non-recoverable deformation,εp, of the model during a
creep test withσ = σ0 is given by a power law relation

εp(t) = σ n

η′1
exp

(
− Q1

RT

)
t, (8)

often used to describe the minimum creep rate or the
stationary creep behavior of ceramic materials [15]. The
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maximum strain of the anelastic part of the modelεa is
determined byE4. It only depends on the creep stress
σ0 and the temperatureT :

εa,max= σ0

E4(T)
. (9)

The general deformation behavior of the model is given
by a partial differential equation derived from the set of
the constitutive Equations 1–7:

pη
− 1

p

3 E4

(
ε̇ − σ

n

η1
− σ̇

E2

) p−1
p

[(
1

E4
+ 1

E2

)
σ̇−ε̇ + σ

n

η1

]

= ε̈ − n

η1
σ n−1σ̇ − σ̈

E2
(10)

For the testing conditions, the partial differential equa-
tion can be simplified to ordinary differential equations.
For constant strain rate tests with ˙ε= ε̇0 andε̈= 0 the
evolution of stress can be calculated from
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p
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(
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n
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. (11)

For creep tests withσ = σ0 (= constant) an ordinary
differential equation for the deformation is derived

−pη
− 1

p

3 E4

(
ε̇ − σ

n
0

η1

) 2p−1
p

= ε̈, (12)

with the solution

ε(t) = σ n
0

η1
· t + σ0

E4
−
[

(p− 1)
Ep

4

η3
· t +C

] 1
1−p

. (13)

The integration constant is determined from the bound-
ary conditionε(t = 0)= ε0:

ε(t) = σ n
0

η1
· t + σ0

E4
−
[

(p− 1)
Ep

4

η3
· t

+
(
σ0

E4
− ε0

)1−p
] 1

1−p

(14)

If the external loadsσ0= 0 for the investigation of creep
recovery, Equation 12 simplifies to

ε̈ +−pη
− 1

p

3 E4ε̇
2p−1

p = 0 (15)

where

ε(t) =
[

(p− 1)
Ep

4

η3
· t + ε1−p

0

] 1
1−p

(16)

is a solution for the boundary conditionε(t = 0)= ε0.
At constant stress experiments, the anelastic strain rate

decays. The factor (p− 1)Ep
4 /η3 is the relaxation time

constantτ . The higherτ , the faster the anelastic strain
rates vanish during the creep tests and stationary creep
is observed earlier. The stress exponentp characterizes
the time evolution of the anelastic strain rate. The higher
the stress exponent, the higher the strain rate changes
at the beginning of a stress relaxation.

4. Results
A typical strain vs. time curve for a test at 1750◦C and
a creep stress of 60 MPa is shown in Fig. 3. The load
is applied at a constant strain rate of 2× 10−5 s−1. A
tensile stress of 60 MPa was reached after 15 min. The
stress was kept constant and the creep deformation was
measured. After approx. five hours, the load was re-
moved quickly and creep recovery was observed. From
the load change after the creep test, the stiffness of
the testing facility (springE2 in the rheological model)
was determined. It was shown that the stiffnessE2
can be attributed mainly to the stiffness of the testing
machine. The stiffness of the machine was measured
temperature-dependent with the fixtures connected di-
rectly to each other without specimen. The results are
shown in Fig. 4. In these experiments it was also shown
that the fixtures only contribute to the elastic and not

Figure 3 Typical strain vs. time curve for a creep test at a temperature of
1750◦C and 60 MPa tensile stress and subsequent creep recovery without
mechanical load.

Figure 4 Load-deflection curves from measurements without specimens
showing the stiffness of the testing machine.
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Figure 5 Creep recovery data points after a creep test at 60 MPa tensile
stress at 1750◦C together with fitted curves calculated from Equation 16
using stress exponentsp= 1, 2, 4, and 6.

to the time-dependent deformation. The contribution of
the testing machine to the stiffnessE2 is more than one
order of magnitude higher than the contribution of the
specimens. Due to the scattering of results it was not
possible to calculate Young’s modulus of the specimen
by subtracting the stiffness of the machine from the
stiffnessE2 with satisfying accuracy. However, for the
evaluation of the constant strain rate experiments with
increasing stress,E2 has to be considered.

During the observation of creep recovery, there is
no elastic or non-recoverable contribution to the defor-
mation. The material behavior during creep recovery
is then determined by Equation 16 with the relaxation
time τ , the stress exponentp, and the initial anelastic
strainε0 as fit parameters. However, it is not possible to
determine three parameters of a creep recovery curve
from a single fit. Fig. 5 shows the creep recovery curve
after a 60 MPa tensile creep test for five hours at a
temperature of 1750◦C together with four fitted curves,
calculated from Equation 16, using stress exponents
p= 1, 2, 4 and 6. The relaxation time constantτ and
the initial anelastic strain were used as fit parameters.
Obviously, the fit with the stress exponentp= 1 is not
the best fit to the experimental data points. However, it
is not possible to decide from the curves which stress
exponentp provides the best fit. The major difference
between the fitted curves is the initial anelastic strain,
which is the limit strain reached after an infinite time.
This limit value isε0= 1.0% for p= 1, ε0= 1.3% for
p= 2, ε0= 2.0% for p= 4 andε0= 2.7% for p= 6.
From the physical meaning of the applied model,ε0
is the anelastic strain stored in the spring 4 at the be-
ginning of the creep recovery experiment. If the creep
stressσ0 is applied for an infinite time before creep
recovery, the anelastic strain becomesε0= σ0

E4
andE4

can be determined directly fromε0. However for short
time creep experiments,E4 can only be determined
under the consideration of the stress-time historyσ (t)
before creep deformation. Under the assumption that
there is no anelastic strain stored in the specimens at

Figure 6 Strain rate vs. strain in double-logarithmic coordinates, show-
ing that different anelastic strains,ε0, correspond to the assumption of
different stress exponents,p.

the beginning of the constant stain-rate deformation,
the accumulated anelastic strain can be determined for
an arbitrary stress exponentp

ε0 =
tC R∑
t=0

1ε(t) = σ (t)

E4
−
[

(p− 1)
Ep

4

η3
·1t

+
(
σ (t)

E4
− ε(t)

)1−p
] 1

1−p

(17)

wheretCR is the beginning of the creep recovery ex-
periment. This calculation is performed with different
deformation parametersE4 until ε0 from the stress-time
history is in accordance withε0 from the fit of the creep
recovery curves. From Equation 17 also the anelas-
tic strain at the beginning of the creep deformation
(σ0= const.) can be determined. Knowing this strain,
the creep curves can be fitted with the non-recoverable
creep strain rate ˙ε1 being the only fit parameter. From
the comparison of the creep rates at different stresses,
the stress exponent of the non-recoverable deforma-
tion can be calculated. When the deformation para-
meters of the non-recoverable deformation are known,
the accumulated non-recoverable strain before the
stress relaxation experiment can be calculated. If the
calculated accumulated anelastic and non-recoverable
strain at the beginning of the creep recovery experi-
ment are not in accordance with the measured strains,
the arbitrary chosen stress exponentp was wrong.
Several such iterative steps were necessary to deter-
mine the stress exponent until consistancy of the model
was reached. Fig. 7 shows the calculated stress ex-
ponentsp and n for different temperatures. For the
non-recoverable deformation an average stress expo-
nent n= 1.64 was calculated. The average stress ex-
ponent of the anelastic deformation wasp= 4. How-
ever, this stress exponent varies somewhat at different
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TABLE I Testing conditions and results for the non-recoverable de-
formation whereT is the testing temperature,σ0 the creep stress, ˙ε the
non-recoverable (stationary) strain rate during the creep test, andη1 the
inverse deformability according to the suggested model

T (K ) σ0 (MPa) ε̇ (s−1) η1 (σ in MPa)

1873 70 5.68× 10−8 1.87× 1010

1873 100 1.01× 10−7 1.89× 1010

1923 65 3.33× 10−7 2.82× 109

1923 80 4.67× 10−7 2.83× 109

1973 50 5.31× 10−7 1.15× 109

1973 65 7.69× 10−7 1.22× 109

2023 40 6.59× 10−7 6.43× 108

2023 60 1.45× 10−6 5.69× 108

TABLE I I Testing conditions and results for the anelastic deformation
determined from creep recovery curves, whereT is the testing temper-
ature,σ0 the preceeding creep stress,E4 the calculated modulus,η3 the
inverse deformability, andp the calculated stress exponent

T (K ) σ0 (MPa) E4 (GPa) η3 (MPa4s) n

1873 100 14.52 2.25× 1013 4.9
1923 65 6.73 5.21× 1012 2.3
1923 80 3.28 6.62× 1012 4.3
1973 65 3.59 1.87× 1012 4.0
2023 60 1.83 1.23× 1012 4.1

Figure 7 Stress exponentp of the anelastic deformation and stress
exponentn of the non-recoverable deformation versus temperature.

temperatures. The results for the non-recoverable de-
formation are summarized in Table I and the results
for the anelastic deformation in Table II. The tem-
perature dependence of the deformabilities 1/η1 and
1/η3 is shown in an Arrhenius plot (Fig. 8). An activa-
tion energyQ1= 708 kJ/mol was determined for the
non-recoverable deformation andQ3= 619 kJ/mol for
anelastic deformation. The Figs 9 and 10 show creep
and creep recovery data for the different temperatures
investigated, together with the curves calculated from
the proposed model, showing good accordance between
the measured data points and the calculated lines.

Figure 8 Arrhenius plot of the temperature dependence of the deforma-
bilities 1/η1 and 1/η3 of the non-recoverable and anelastic deformation
for the determination of the activation energy.

Figure 9 Data points from creep experiments at different temperatures
and stresses, together with fitted curves calculated from Equation 14.

To investigate the long-time material behavior a spec-
imen tested for 100 hours at 1873 K was subjected to
cyclic loading at a temperature of 1973 K with a stress
σ = 70 MPa at a stress ratioR= 0. The strain evolu-
tion is shown in Fig. 11. A comparison with the strain
evolution during a creep experiment at the same tem-
perature and a stress of 65 MPa shows that the aged
specimen has a higher creep resistance, but qualitatively
the same deformation behavior as the virgin specimen
with non-recoverable and recoverable contributions to
the deformation.

5. Discussion
As the specimen size was unusually small for creep
investigations, the accuracy of the results was of con-
cern. A creep tests with a bigger specimen size was
performed by Luecke [16]. He used a gage length of
16 mm and was able to measure the strain directly at
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Figure 10 Data points from creep recovery experiments after creep
investigations at different temperatures together with fitted curves cal-
culated from Equation 16.

Figure 11 Strain vs. time curve under cyclic loading at a temperature
of 1700◦C with a repeated stress ofσ = 70 MPa of a specimen which
was previously subjected to a 100 hours test at 1873 K. In comparison a
creep curve at 1700◦C and 65 MPa of an as received specimen is shown.

the specimen, using flags. Due to problems with the
preparation of specimens, only a single specimen was
obtained for creep testing. The test was performed at
1500◦C at a stress of 50 MPa. Because the resolution
of the strain measurement system was not sufficient to
detect creep deformation, the stress was stepwise in-
creased to 60 MPa and 75 MPa. At 75 MPa a strain
of 0.2% was measured within 100 hours. This gives an
average strain rate of 5.56× 10−9 s−1. From the shape
of the creep curve, anelastic and non-recoverable could
not be distinguished. Due to the stepwise increase of
the load, we assume that the anelastic component was
too small to be detected. Using the deformation param-
eters from this investigation a stationary strain rate of
4.89× 10−9 s−1 was calculated for the non-recoverable
deformation under those testing conditions. The differ-

ence of only 14% between the calculated strain rate and
the measured strain rate shows that the accuracy of our
measurements is satisfactory.

Two mechanisms contribute to the creep behavior in
silicon nitride ceramics. Diffusional creep can be pre-
sumed to occur by redistribution of matter through the
amorphous grain boundary phase. Solution of Si3N4
into the viscous phase and subsequent reprecipitation
elsewhere would be driven by differential chemical po-
tentials that arise from localized stresses [17]. The strain
rate is related to the grain size (d), molar volume of the
diffusing species (Ä), the molar fraction of the diffus-
ing species (C) in the liquid, the volume fraction of the
liquid phase (V1), the viscosity (η) of the liquid, and the
applied stress (σ ) [17, 6]:

ε̇diff = 8Ä2/3

d2η
CV1σ (18)

Equation 18 shows that a linear stress dependence of
the creep rate is expected, when diffusional creep is the
only creep mechanism. If a diffusional creep mecha-
nism is assumed, the creep rate would be controlled by
the diffusion coefficient for the slowest species, that is
Si [14]. The diffusion of silicon in amorphous silica has
been measured by Brebecet al. [18]. An activation en-
ergy of 579 kJ/mol was found, very close to the activa-
tion energy of the plastic deformationQ1= 619 KJ/mol
measured in this study.

The second mechanism involved in the high-
temperature deformation of silicon nitride is grain-
boundary sliding with accompanying cavitation. The
contribution of cavitational creep in comparison to dif-
fusional creep increases with increasing volume frac-
tions of the liquid, higher stresses, longer times and
lower viscosity. It is assumed that the temperature de-
pendence of the grain-boundary sliding mechanism is
correlated with the activation energy of the viscosity
of the grain-boundary phase. The viscosity of the grain
boundary phase of the material investigated in this study
was measured by Pezzottiet al. with internal friction
experiments [13]. An activation energy of 410 kJ/mol
was found in good correlation with values for transpar-
ent SiO2 (440 kJ/mol) [19] and high-purity SiO2-glass
fibers (390 kJ/mol) [20]. This is significantly lower
than in this investigation. It was shown by electron en-
ergy losss spectroscopy (EELS) quantitative analytical
methods that the grain-boundary films in high-purity
HIPed Si3N4 ceramics contain a considerable amount
of nitrogen [12]. Grain-boundary film compositions
of SiN0.49±1.4O1.02±0.42 and SiN0.63±0.19O1.44±0.33 were
found in this investigation. It is assumed that the nitro-
gen concentration in the grain-boundary depends on the
time-temperature history and the nitrogen-pressure dur-
ing the heat-treatment. While the nitrogen pressure in
Pezzotti’s experiments was only 5 Pa [13], a pressure of
1.1 MPa was applied in our experiment. Therefore we
assume that the chemical composition of the grain-
boundaries in the two experiments was different. The
nitrogen content in [13] was probably lower and there-
fore the results for the activation energy closer to that
of the high-purity SiO2-glass fibers.
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The strain rate for cavitational creep cannot be ex-
pressed as a simple power law with respect to time. The
stress exponent is between 2 and 7 and increases with
stress. For the material investigated, at temperatures
between 1600 and 1700◦C a stress exponent between
1.41 and 1.63 was found with the higher values deter-
mined at higher stresses, indicating that both diffusional
and cavitational creep is involved. At 1750◦C a higher
stress exponent of 1.94 was found, indicating a higher
fraction of cavitational creep. SEM micrographs were
taken from the tensile loaded (position a in Fig. 1) and
the unloaded part of the specimens (position b in Fig. 1).
The specimens were tested at 1700◦C with an overall
strain of 4% (Fig. 12a and b), and at 1750◦C with an
overall strain of 5.8% (Fig. 13a and b). From Fig. 12 it
was concluded that cavitation is not the major deforma-
tion mechanism at temperatures below 1750◦C. Though
smaller cavities may be not visible in the SEM micro-
graphs, an accumulated cavitation volume in the range
of 4% should be discovered in the micrographs. Also
with the transmission electron microscope cavitation

(a) (b)

Figure 12 Microstructure of a specimen tested at 1700◦C with an overall strain of 4.0%. (a) Position a in Fig. 1—loaded part; (b) Position b in Fig. 1—
unloaded part.

(a) (b)

Figure 13 Microstructure of a specimen tested at 1750◦C with an overall strain of 5.8%. (a) Position a in Fig. 1—loaded part; (b) Position b in Fig. 1—
unloaded part.

was not observed. However in Fig. 13a it is shown that
at 1750◦C cavities are produced by separation of two
grains perpendicular to their common boundary or by
separation of two parts of a broken whisker. As the melt-
ing point of SiO2 is at 1730◦C, it is assumed that the
lowered viscosity of the grain boundary phase enhanced
grain boundary sliding with accompanying cavitation.

According to the model used for the data evaluation,
the primary creep deformation is completely recover-
able. This is not in general true for all silicon nitride
materials. Langeet al. [21] observed during tests con-
ducted in air that the strain rates decreased continu-
ously during the test and no stationary creep was at-
tained. He concluded that the oxidation of silicon nitride
caused cleaning of the grain boundaries from impurity
ions leading to a form of strengthening. A similar kind
of strengthening was observed during our experiments
with a specimen pre-tested for 100 hours at 1600◦C. It
is assumed that grain growth during the first experiment
caused the increase of the creep resistance. However,
due to the small amount of grain boundary phase in this

1465



Figure 14 TEM bright field image of the material tested for 100 hours
at 1600◦C and 72 hours at 1700◦C.

material, it is very difficult to make the microstructure
visible by either plasma etching or chemical etching.
Therefore, changes of the grain size distribution can-
not be measured with sufficient accuracy. The speci-
men tested for 100 hours at 1600◦C and for 72 hours
at 1700◦C was investigated in the analytical transmis-
sion electron microscope. Fig. 14 shows the bright field
image of the material. There was no sign of cavitation.

Since grain boundaries are usually non-planar, grain
boundary sliding must be accompanied by an accomo-
dation process. Small amounts of total sliding can be
accomodated by elastic strains in neighboring grains. In
this case the strain rate-stress relationship of the anelas-
tic deformation (Equation 3) is linear, i.e., the stress
exponent equalsp= 1. This is the case when a tor-
sional pendulum apparatus is used in internal friction
experiments. A spring-dashpot model for the anelastic
strain due to grain boundary sliding was suggested by
Mosheret al. [9] and correlated to the micromecha-
nisms of sliding and mass transport at the grain bound-
ary by Pezzottiet al. [13]. However, if higher strains
in the range of 1% are involved, a linear stress-strain
rate relationship can not be expected any longer. Highly
localized strain fields are observed at grain boundaries
in crept specimens of Si3N4 which were frozen under
stress. In TEM investigations strain whorls were ob-
served, located along grain boundaries. They appeared
to be asymmetrical with respect to the grain bound-
ary normal. The contours of the whorls appeared to
originate from a single point contact between neigh-
boring grains [22, 23]. Such point contacts cause non-
linear force-displacement relationship with a stress ex-
ponent>1 even if isotropic, homogenous, elastic mate-
rial properties are assumed as shown by the equations
of Hertz. However, the stress exponent in the consti-
tutional equation for the anelastic deformation cannot
be determined from the creep recovery curves with-
out the assumption that primary creep deformation is
completely recoverable. This is true only under the as-

sumption that microstructural changes during the defor-
mation can be neglected. After extremely high strains,
attained during superplastic deformation, grain align-
ment caused by grain rotation, and grain elongation
were observed [24]. It is assumed that such microstruc-
tural changes do not have to be taken into consideration
because the overall strains are very small. However,
the comparison of the curves in Fig. 11 shows that the
model is not suitable to describe long-time deforma-
tion behavior because after 100 hours a hardening of
the material was observed but not considered in the
model. The activation energyQ3 calculated for the re-
coverable deformation is close to the activation energy
Q1. Therefore it can be assumed that the same deforma-
tion mechanisms are responsible for both recoverable
and non-recoverable deformation.
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